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Motivation
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1.2. A Motivating Example /@ BIERETRE
« Goal: to train a robot to accomplish Task T in an indoor
environment E; using machine learning techniques:
« Sufficient training data required: sensor readings to measure the

environment as well as human supervision, i.e. labels

« A predictive model can be learned, and used in the same
environment

Task T1 in environment E4
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New robot
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« People is of capacity to learn quickly and precisely with
priori knowledge of target domain and the knowledge
transferred from the similar but different (source) domain

« Performance of traditional machine learning techniques
highly relies on whether sufficient labeled data is
available to build a predictive model

* When environment changes (e.g., new domain or new

task), the learned predictive model performs poorly
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Definition




2.1.1. Intuitive View (i MIRISRIE
\ ’ Data Mining Lab

 Inspired by human’s transfer of learning ability

« The ability of a system to recognize and apply knowledge
and skills learned in previous domains/tasks to novel

tasks/domains, which share some commonality




. 2.1.2. Formal Concepts I i BIRISIELINE
\ ’ Data Mining Lab
« Common concepts of TL
« Domain: A domain D consists of two components: a feature space X and
a marginal probability distribution P(X), where X = {x4, ..., x,} € X

« Task: A task consists of two components: a label space Y and an
objective predictive function f(-) (denoted by T = {y, f(-)})

« Formal Definition of TL
« Condition: Given a source domain Ds and learning task Ts, a target
domain D, and learning task T

« Goal: Transfer learning aims to help improve the learning of the target
predictive function f(+) in D using the knowledge in D and T

« Limitation: where D¢ # Dy, or Ts # Tr
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2.1.3. Further Understanding @ HIRISIETIIE

Given a target domain/task, transfer learning aims to
1) identify the commonality between the target domain/task
and previous domains/tasks

2) transfer knowledge from the previous domains/tasks to the
target one such that human supervision on the target
domain/task can be dramatically reduced.

Transfer Learning Predictive
‘ Algorithms ‘ Models

Sufficient labeled t
training data
—

Target Domain Target Domain
[ Task Data | Task Data

Unlabeled training/with a few labeled data



2.2.1. Category of Transfer Learning

* The category of transfer learning problems
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Learning Setting

Source and Target Domain

Source and Target Task

Traditional Machine Learning

The same

The same

Inductive Transfer Learning/
Unsupervised Transfer Learning

The same

Different but related

Different but related

Different but related

Transductive Transfer Learning

Different but related

The same
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2.2.1. Category of Transfer Learning @ BTSN

 Basic ideas of transfer learning approaches

Transfer learning approaches Description

Instance-transfer To re-weight some labeled data in a source
domain for use in the target domain

Feature-representation-transfer Find a “good” feature representation that reduces
difference between a source and a target domain
or minimizes error of models

Model(Parameter)-transfer Discover shared parameters or priors of models
between a source domain and a target domain

Relational-knowledge-transfer Build mapping of relational knowledge between a
source domain and a target domain.
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2.2.1. Category of Transfer Learning @ BTSN

« Scope of approaches

Inductive Transductive Unsupervised
Transfer Learning Transfer Learning | Transfer Learning
Instance-transfer N v
Feature-representation- \ \ N
transfer
Model(Parameter)- \
transfer
Relational-knowledge- N
transfer
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2.2.1. Other Categories @ MRS

« Homogeneous/Heterogeneous transfer learning
X¢ # X7, P(Xs) # P(X7), Ys # Yr

*  Symmetric/Asymmetric feature-based transfer learning

[ |
2K @
CXe D

(a) (b)

Fig. 1 a The symmetric transformation mapping (T and T;) of the source (X;) and target (X;) domains into a
common latent feature space. b The asymmetric transformation (T;) of the source domain (Xc) to the target
domain (X;)

\




2.2.2. Confusing Related Areas

 Directly Similar:

Domain adaptation
Multi-view learning
Zero-shot/Few-shot learning
Multi-task learning

 Indirectly Similar:

Learning to learn

Label embedding/Attribute
Continuous learning
Lifelong learning

@

HIRBRTNE

Data Mining Lab




' BIRISIETINE
\ ’ Data Mining Lab

Representation-based
Transfer Learning
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« Assumption: Source and target domains only have some

overlapping features

« ldea: Through feature transformation, the data in two

domain are merged into one feature space

Classical Methods:

» Transfer component analysis (TCA) [Pan, TKDE-11] .,
» Geodesic flow kernel (GFK) [Duan, CVPR-12]
» Transfer kernel learning [Long, TKDE-15]




Data Mining Lab

. 3.1.2. Transfer Component Analysis @ WiEEEESEE

« Main idea: the learned ¢ should map the source domain and
target domain data to a latent space spanned by the factors that
reduce domain distance as well as preserve data structure

Latent factors

>
A A A\ A

Temperature | Signal Power of APs | |Building

properties structure

Causes the data distributions between two domains to be different
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. 3.1.2. Transfer Component Analysis @ WiEEEESEE

« High level optimization problem

“},}“ —[Dist(qo(Xs), (X T))]+ AQ(¢p)

s.t.| constraints on ¢ (Xs) and ¢ (X7)

\ 4

Maximum Mean Discrepancy (MMD)
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3.1.3. Geodesic Flow Kernel @ HURISIBEINE

Idea: Data are mapped into manifold space, and the distance
between two domain is measured and minimized

®(0)T
: 0 , 0o
0 — (D(t)T X Hoo xzfx’ (Zi ? Zj )
: " = X6
q’(l)T » le
P G423




3.2.1. Leverage Domain-specific Info

TL for Sentiment Classification

@
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Adeo Games

(1) CompeCt; easy to operate,

(gooDpi

(2)Averyame' Itis
action packed and full of

@xcitemen®

| am very much

hooked on this game.

(3) | purghdsed this unit from
Circy’City and | was very
citeclabout the quality of the

picture. It is reall and
sharp.

action andg

gry realistic shooting

IOtS. We

played this and were hooked.

(5) It is also quite blurry in

very dark settings. | will
@ HP again.

~—~——

(6) The game is so boring. |
am extremely unhappy and
will probably

Gover iy
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3.2.1. Leverage Domain-specific Info @ RS

» Three different types of features
— Source domain (Electronics) specific features, e.g.,
compact, sharp, blurry
— Target domain (Video Game) specific features, e.g.,
hooked, realistic, boring

— Domain independent features (pivot features), e.g.,
good, excited, nice, never_buy
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3.2.1. Leverage Domain-specific Info @ RS

e Intuition

— Use pivot features as a bridge to connect domain- specific features

— Model correlations between pivot features and domain-specific
features

— Discover new shared features by exploiting the feature
correlations

« How to select pivot features?

— Term frequency on both source and target domain data.
— Mutual information between features and source domain labels
— Mutual information on between features and domains
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3.2.1. Leverage Domain-specific Info @ RS

Spectral Feature Alignment (SFA)

Domain-specific features

realisti

Pivot features

good

never_buy

horing

» If two domain-specific words have connections to more common pivot words in
the graph, they tend to be aligned or clustered together with a higher probability.
> If two pivot words have connections to more common domain-specific words in
the graph, they tend to be aligned together with a higher probability.




Domain-specific features Data Mining Lab
realisti

3.2.1. Leverage Domain-specific Info @ RS

Pivot features Electronics
exciting <) l ompact '
_ 3 hog ‘
good ‘
ﬁ\ksharp 4\
never_buy 5 —blurry Video Game

/]

boring
Spectral Clusteringu
Video Game Compacte— Electronics
borin _—
9 blurry realistjc

Electronics sharp Video Game
hooked
Electronics

Video Game




3.2.1. Leverage Domain-specific Info @
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sharp/hooked | compact/realistic | blurry/boring
& ; :
Q 0 0 1
¥ Training
y=f(x)=sgn(w-x"), w=[11,-1]
‘lPrediction
sharp/hooked | compact/realistic | blurry/boring
SR : :
< 0 0 1
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'3.2.2. Multi-source Transfer Learning @ RS

Transitive transfer learning [ Tan, KDD-15]
In two dissimilar domains, intermediate domains are leveraged to
help knowledge transform

Intermediate Domain QC‘/

unrelated or @

weakly related
Source Domain Target Domain
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'3.2.2. Multi-source Transfer Learning @ RS

How to select intermediate domain?

* Domain complexity

{z|c(z) <t x n}

cplz(D) = |

The domain complexity is calculated as the percentage of long tail features
that have low frequency.

* A-distance

disa(D;, Dj) = 2(1 — 2 iﬂi’ﬂ error(hlD:, D;))
c

The A-distance estimates the distribution difference of two sets of data
samples that are drawn from two probability distributions
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'3.2.2. Multi-source Transfer Learning @ iR

Intermediate Domain Selection

 Givenatripletr={S, D, T}
« Take six measurements as features to construct a logistic
regression model

feature description
cplx_sre (1) source domain complexity
cplx_inter (c2) intermediate domain complexity
cplx_tar (ca) target domain complexity
dis’y (c4) a_distance between source and intermediate
dis® (cs) a_distance between source and target
dis’y (ce) a_distance between intermediate and target

* Estimate variables with MLE




Data Mining Lab

'3.2.2. Multi-source Transfer Learning @ iR

Nonnegative Matrix tri-Factorization:

Lsr = ||Xs — FsAsGs|| + || X — Fr A G|

* The matrix F € R™*Pindicates the information of feature
clusters and p is the number of hidden feature clusters

- 1 o |AY] A
‘X'S_[F?FS] AQ Gs

1
n Hk P H T
Aj

* The matrix G € R*™ is the instance cluster assignment matrix
and c Is the number of instance clusters

« A € RP*€ jsthe association matrix. ¢ is the number of instance
clusters or label classes




3.2.3. Distant Transfer Learning @ R RS
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Distant domain TL [Tan, AAAI-17]

In the transferring between two highly dissimilar domains, the
autoencoder is used to select unlabeled intermediate data from
multiple auxiliary domain.

Classification Accuracy of Tiger
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Supervised Leanring Transfer Learning

Number of labeld images
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3.2.3. Distant Transfer Learning @ WEpETEE

Idea: Reconstruction errors on the source domain data and the
target domain data are both small

| -
T1(fe, fayvs,vr)=—) vsll&s—25|3+—) vil@#r -3
ns nj

i=1 i=1

1 < -
— T — @ R(vs, 1
+ﬂ_T ;Hiﬁr xr|3+ R(vs,vr), (1)

Sample Convolution and Fully connected Deconvelution
Selection pooling layers autoencoder and unpooling
(optional) layers layers{optinal)

selected !/
ource data @1
— u —
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- —1 data
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3.2.3. Distant Transfer Learning @ HIERIETIRE

As i A S i
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i=1

Sample Convolutionand  Fully connected Deconvolution
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3.2.3. Distant Transfer Learning
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Results:
SVM DEL GFK LAN | ASVM TTL STL SLA
‘horse-to-face’ 844+2 | 88 +2 | 773 | 7T9+2 | 7644 | 7182 | 863 | 92 +2
‘airplane-to-gorilla™ | 751 | 624+3 | 6745 | 664+4 | 51 £2 | 6562 | 7613 | 84 £+ 2
‘face-to-watch’ LT | 6843 | 61+4 1634|6015 | 67+L4| 755 | 8814
‘zebra-to-collie’ 31692 | 562 | 5Fr4+3 | 59+D | W3 | 2+£3 | T8L2
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3.2.4. Label Embedding/Attribute for TL @
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Simultaneous Deep Transfer Across Domains and

Tasks [Tzeng, ICCV-15]

Simultaneously optimizes for domain invariance to facilitate
domain transfer and uses a soft label distribution matching
loss to transfer information between tasks

Source domain % % e Target domain
‘L‘r};’:%:i e ®
I."._.I‘@; -j [ ] -
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3.2.4. Label Embedding/Attribute for TL f, \ SRS mI e
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SHL-MDNN [Huang, ICASSP-13]

Sharing hidden layers in DNN model, and learning different tasks
by different softmax layers

Language 1 senones Language 2 senones Language 3 senones Language 4 senones

00...00 ©9...60) (00...00) (0®..-09)

Shared

Many Hidden Layers+ E '
| ' Feature Transformation

‘ ‘ é (Lang &) Training or Testing Samples
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Adversarial Discriminative Domain Adaptation
[Tzeng, arXiv-17]

Pre-training Adversarial Adaptation Testing
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source images

=
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Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.
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GOGAN [Liu, NIPS-16]

Generators Discriminators

GAN, 4:(2) f1(91@)

P . » - L L 1 L * L - & * —.—H f/'-
z — | weight|sharing

@) f2(922)

ga(2

—> -— — > > . — . _._.f\ )

GAN,

Figure 1: CoGAN consists of a pair of GANs: GAN; and GAN32. Each has a generative model for synthesizing
realistic images in one domain and a discriminative model for classifying whether an image is real or synthesized.
We tie the weights of the first few layers (responsible for decoding high-level semantics) of the generative models,
g1 and g2. We also tie the weights of the last few layers (responsible for encoding high-level semantics) of the
discriminative models, f; and f5. This weight-sharing constraint allows CoGAN to learn a joint distribution of
images without correspondence supervision. A trained CoGAN can be used to synthesize pairs of corresponding
images—pairs of images sharing the same high-level abstraction but having different low-level realizations.




3.2.6. GAN for Transfer Learning

CDD [Fu, arXiv-17]

.SU”"C&' DU’”Ui” \E

Xs—

///:[ Real / Fake ]

={1=12,..L)
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Joint Space Ec z G,

Xr—

larget Domain /
Encoder Generator X Discriminator

Figure 1: Our proposed architecture of Cross-Domain Disentanglement (CDD). The network components E¢,
Gc, and D¢ are shared by cross-domain data, while those with subscripts S and 7" are associated with data in
the corresponding domain. Note that for X7 will be recognized as real/fake images due to the lack of ground

truth labels [ (shown in red).
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Domain-Adversarial Training of Neural Networks
[Ganin, IMLR-16]
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SBAGA-GAN [Russo, arXiv-17] u

train Figure 1: Schematic il-
lustration of our SBADA-
Habels | GAN. In the training
phase, vellow lines repre-
sent data flow from source
to target, while blue lines

Noise

Bst(S)

(s)

J2 Dst

a * | represent data flow from
J B target to source. The red
[ ( g a Des lines indic?,te the prop.osed
class consistency condition
slabels that constraints a source
Cus(Gst(S)) R L] O [— image to keep its own label
— —> | Cts when passing sequentially
- ﬁ:use M *pseudo through the two generators
= - Gts G4 and (G4 for domain

test transformations. During
— test phase the target sam-
ples are fed directly to C;
and transformed by G5 be-
fore entering (., to match
the respectively classifiers
trained data styles. The
output of the two classi-
fiers are merged by linear
combination to get the fi-

nal prediction.
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Future Work
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4.1. Open Questions @ SRS

Theoretical study beyond generalization error bound

(Negative transfer learning, Domain similarity metric)
« Given a source domain and a target domain, determine
whether transfer learning should be performed
 For a specific transfer learning method, given a source and a
target domain, determine whether the method should be used
for knowledge transfer

« Good (Interpretive) representation
 Transfer learning with plenty of source domains

 Online transfer learning
 Transfer learning for deep reinforcement learning
 Lifelong continuous learning
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